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Abstract — This paper describes a procedure for obtaining the cutoff

wavenumbers of TE and TM modes in wavegnides of arbitrary cross

section. A surface integral equation approach is used where the E-field

equation has been transformed into a matrix equation using the method of

moments. An iterative technique has been used to pick the eigerwalues of

the solution matrix which corresponds to the waveguide cutoff wavenum-

hers. The salient features of this technique are its speed, its simplicity, and

the absence of any spurious modes while treating waveguides of arbitrary

cross section. The first four modes have been tabulated for various

waveguides and results are in very good agreement with published data.

I. INTRODUCTION

A NALYSIS OF hollow conducting waveguides is an

area that has been in the limelight lately. Various

methods to find the cutoff wavenumbers are available in

the literature, among them the finite difference and inte-

gral operator methods. A surface integral equation ap-

proach has been used here because of its simplicity and

generality.

Treatment of waveguides with arbitrary cross section is

a challenging task to solve on the computer. Though

numerous approaches are available in the literature to

solve this problem, they may be deficient in two areas, viz.

speed and simplicity, for simulating waveguides of arbi-

trary cross section. As an example, the finite difference

method may be a very difficult way of treating waveguides

with nonrectangular cross sections. The use of the integral

equation method to solve for the waveguide cutoff

wavenumbers has been explained here by placing con-

siderable importance on the generality of the problem.

Spielman and Barrington [1] have treated this problem by

using a similar approach. Their method, however, leads to

the existence of spurious modes. The method used in this

paper eradicates the existence of spurious modes and con-

verges quadratically in the vicinity of a root (hence is

faster). The cutoff wavenumbers of a coaxial waveguide

with cylindrical outer conductor andrectangular inner con-

ductor have been computed here, which serves as an exam-
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ple to verify the speed and simplicity of this method. The

CPU time for picking the dominant mode has been pro-

vided to give an idea of the speed of this method. The

algorithm was run on an ALLIANT FX/80, a vector

concurrent computer. However, only a single processor in

scalar mode was used, whose speed is comparable to that

of a VAX 8530.

II. INTEGRAL EQUATIONS

The hollow conducting waveguides are assumed to be

infinite in the z direction and to have arbitrary cross

section. The waveguide is completely filled with a homoge-

neous dielectric (air in this case). The matrix containing

the information on the mode cutoff wavenumbers can be

obtained by generating the matrix corresponding to the

scattering problem for the same structure under plane

wave illumination. Consider an equivalent problem where

E’ is a wave incident on the hollow conducting waveguide.

This generates surface currents Jon the body that in turn

reradiate into free space. Since the body is a conductor, the

total tangential electric field vanishes on the surface of the

body. In other words,

rzx[E*+E’]=0 on C, (1)

where Es is the scattered field produced by the current J,
and n is the unit vector normal to the surface of the body.

At cutoff, the surface currents J on the walls of the

waveguide produce zero fields on the contour C,. Hence

nxEX=O. (2)

This is the homogeneous E-field integral equation which
can be used in evaluating the cutoff wavenumbers of a

waveguide. The equation for Es depends on whether the

fields in the waveguide are TM or TE to the ; axis.

A. TM Case

The scattered field Es and the surface electric currents

are in the z direction. Since the current J is independent

of z there is no electric charge associated with the surface

current. Equation (2) then simplifies to

z.[–juA(J)] =0 (3)

where z is the unit vector in the z direction, u is the
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The method of moments has been used to reduce the

integral equation into a matrix equation. Since the current

flows in a circumferential direction, it is necessary to

enforce Kirchhoff’s current law at a junction of two or

more conductors. This is especially true while analyzing

vaned and T-septate rectangular waveguides. Thus a

triangle expansion for the current .lcoupled with a pulse

testing procedure has been used here. As in Fig. 1, the

body is modeled using linear segments with the current

varying linearly across each segment. The expansion for J
becomes

N

J(p’) =s ~J~(p’)
,=1

frequency (2T~), and A denotes the magnetic ~ -1angular

vector potential, which is given by the line integral

A(J) = $$cJ(p’)H$l(klp – p’1) all’. (4)

Here p and p’ denote the position vector to the field and

the source point respectively, C, is the contour supporting

J, and k = u~. Hf2) is the zeroth-order Hankel function

of the second kind.

A method of moments procedure can be used to reduce

the integral equation into a matrix equation. A pulse

expansion for the current J along with a point matching

testing procedure has been used here. The body is reduced

to a number of linear segments as shown in Fig. 1 with the

currents assumed constant on each segment:

J(p’) =Z ~ J#, (p’) (5)
,=1

(
P,(p’) = :’

Sz<p’<sl+l

elsewhere.

Equation (3), after testing at the center of each linear

segment, reduces to

— ~ ~ J,f’’’’P,)H$2)(kl pJ(1J2,/2, - P’1)4’= o (6)
1=1 s,

j=l,2. ... N
~J(l/2) = (Sj + ‘J+l)/2-

B. TE Case

The scattered field and the surface electric currents are

in the circumferential direction and there is surface charge

associated with the electric current. Equation

written as

nx[–jwl(J) –v@(cr’)] =0

where

(2) can be

(7)

A(J) = ;~cJ(p’)Hf2)(klp – P’1) dl’

+(0’) = &#@f)H$2)(klp-p’1)d/’

= &jcv’J(@)H$2)(kb - P’1)all’.

The primed and unprimed variables represent the source

and field coordinates respectively. The quantities p, p’, k
@) ~e~resent the same quantities as in the TM case,and Ho

and n is the unit vector normal to the surface of the

waveguide.

S,<p’<s, +l
(8)

=1–
P’

(s,+2 -s,+,) ‘

Sj+l<p’<s, +z

= o, otherwise

and s is the circumferential unit vector.

The divergence of J given by v‘. .l(p’) can be repre-

sented as a doublet as shown below

j=l

N

= ~ JP1(p’)
,=1

1
‘i(P’) = (sl+l_sz) ~ Sl<p’<sl+,

1
—

(sl+l-si+2)’
L+l<P’<SZ+2. (9)

with pulses modifies this equation to

+ H($2) ( kl PJ(l/2)+ 1
}]

– P’1) “As,(l/2)+1 dp’

‘nx[-&},L~+’pi(P){HJ2)(klPjl/2)+1-Pl)

– H~2) ( kl ~j(l/2)

1
– P’1)]dd = o

j=l,2, --., N Pj(l/2) = (sj+sj+,)/2

) ‘sj(l/2)+l=s(sj+2 ‘Sj+l).‘sj(l/2) = ‘(s/+l — ‘j

(lo)

In (10), an averaging procedure has been used for the

magnetic vector potential and a finite difference approxi-

mation for the scalar potential. Using (6) and (10) the

original problem can be reduced to a matrix equation of

the form

[Z][J]=O (11)

where Z is an N X N matrix and J an N X 1 vector.

Matrix Z contains information about the cutoff wavenum-

bers, which occurs as an argument to the Hankel function.
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III. EVALUATION OF CUTOFF WAVENUMBERS

The wavenumber k appears as an argument in (6) and

(10). The problem therefore reduces to finding the

wavenumbers of the [Z] matrix that represent the cutoff

modes. At cutoff, the matrix Z becomes singular. Hence

det[Z]=O. (12)

The determinant of a matrix Z requires L9(n3) operations.

However (12) can be rewritten as

A1A2A3 . . . An =0 (13)

where Al, A2, . “ ., An are the eigenvalues of the matrix Z.

This is a very efficient way of evaluating the determinant

since only d ( n 2) operations are necessary. Since the mini-

mum eigenvalue listed in (13) approaches zero at cutoff,

(11) becomes

[z][J]=Amin [J] (14)

where A ~,~ is the smallest eigenvalue of Z. Hence the

problem reduces to finding the wavenumber at which the

minimum eigenvalue of [Z] goes to zero. The matrix [Z] is

unsymmetric and complex and the eigenvalues are also

complex. The absolute value of the minimum eigenvalue

has been used in the algorithm for finding the cutoff

wavenumbers. A very expensive way of searching for the

cutoff wavenumbers is by using a scanning procedure

wherein the minimum eigenvalues are computed for a

certain range of frequencies. The wavenumber at which the

minimum eigenvalue is the smallest is then the cutoff

wavenumber of the waveguide. This method has two draw-

backs, namely, the evaluation of the Z matrix over a range

of frequencies and the inaccuracy in the result obtained

which depends on the scanning step. These drawbacks

have been solved by using a method expounded by Muller

[2]. Muller’s method is an iterative technique which con-

verges quadratically in the vicinity of a root, doesnot

require the evaluation of any derivatives, and obtains

complex roots even when these roots are not simple.

IV. ALGORITHM FOR OBTAINING CUTOFF

WAVENUMBERS

The steps involved are given below,

i)

ii)

iii)

iv)

Choose a lower limit for the wavenumber and use

this information to patch the waveguide using the

necessary number of expansion functions.

An initial guess for the wavenumber is chosen and

the Z matrix is evaluated at this frequency. The

integral equation corresponding to either the TM or

the TE case is used for generating the Z matrix.

The eigenvalues of the Z matrix are then found

using an IMSL routine. These eigenvalues are varied

to find the minimum absolute eigenvalue, which is

then used as the function to be minimized.

Muller’s method is used iteratively to choose the

wavenumbers that minimize the function. Steps (ii)

and (iii) are repeated at each wavenumber chosen

iteratively by Muller’s method. The wavenumber

corresponding to the minimum value of the function

is the cutoff wavermmber of the waveguide. An error

criterion has been used to terminate the algorithm,

O/’ a .L, O

Fig. 2. Cylindrical waveguide

Fig. 3. L-shaped rectangular waveguide.
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Fig. 4. Single ridge wavegulde.
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Fig. 5. Varied rectangular waveguide,

which is

/~.+1–k.h’kn <10-5

where kn + ~ is the present estimate and k,, is the

past estimate for the wavenumbers.

V. EXAMPLES

The first four cutoff wavenumbers have been evaluated

for various waveguides as shown in Figs. 2–8. Tables

I(a)–VII(a) and I(b)–VII(b) provide the first four cutoff

wavenumbers for the waveguides depicted in Figs. 2–8 for

the TM and TE modes, respectively.

VI. POINTS TO NOTE

1) On an average, approximately five expansion func-

tions per wavelength are necessary to simulate the struc-

ture being analyzed.

2) Though Muller’s method is a fast iterative technique.

the rate of convergence depends on the initial guess, which

in turn affects the CPU time. The dominant mode of each

waveguide has therefore been computed using an initial
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TABLE II(a)
L-SHAPED WAVEGUIDE (TM CASE)
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Fig. 6. T-septate rectangular waveguide,

Ci.1.25

b:l.O
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Fig. 7. Coaxial rectangular waveguide.

a.l. o
b.o.!5
C =0.25

Fig. 8. Coaxial waveguide.

TABLE I(a)
CYLINDRICALWAVEGUIDE(TM CASE): lk FIRST FOUR CUTOFF
WAVENUMBERS FOR A WAVEGUIDE wIm CYLINDRICAL CROSS SECTION

GIVE AN IDEA OF THE ACCURACY OF THIS METHOD.

Num kc(exact) kC(compute(l)Difference%

1 2.4048 2.4111 0.26
2 3.8317 3.8416 0.26
3 5.1356 5.1485 0.25
4 5.5200 5.5346 0.26

Order of Matrix =40

Cpu Time for Dominant Mode = 20 sees

TABLE I(b)

CYLINDRICAL WAVEGUIDE (TE CASE): A CHECK TO DETERMINE THE
AccuwicY OF THIS METHOD WITH Trm FIRST FOUR MODESLISTED.

Num kc(exact) kc(computed) Difference%

1 1.8412 1.8462 0.27

2 3.0542 3.0645 0.34

3 3.8317 3.8422 0.27

4 4.2012 4.2200 0.45

Order of Matrix = 40

Cpu Time for Dominant Mode = 136 sees

Num kc Matrix Size

1 4.8677 40

2 6.1361 40

3 6.9908 40

4 8.5525 60

~ for dominant mode = 4.819 [Reid and Walsh]

Cpu Time for Dominant Mode = 45 sees

Difference in dominant mode = 1‘ZO

TABLE II(b)

L-SHAPED WAVEGUIDE (TE CASE)

Num kc Matrix Size

1 1.8917 14

2 2.9159 14

3 4.8755 22

4 5.2463 22

kc for dominant mode = 1.88 [Sarkar et al]

Cpu Time for Dominant Mode = 29 sees

Difference in dominant mode = 0.62%

TABLE III(a)

SINGLE RIDGE WAVEGUIDE (TM CASE)

Num kc Matrix Size

1 12.0381 40

2 12.2938 40

3 13.9964 70

4 15.5871 70

kc for dominant mode = 12.164 [Spielman and Barrington]

Cpu Time for Dominant Mode = 30 sees

Difference in dominant mode = 1%

TABLE III(b)

SINGLE RIDGE WAVEGUIDE (TE CASE)

Num kc Matrix Size

1 2.2496 28

2 4.9436 28

3 6.5189 28

4 7.5642 28

kc for dominant mode = 2.2566 [Sarkar et al]

Cpu Time for Dominant Mode = 156 sees

Difference @ dominant mode = 0.31%

guess of kc= 1.3 to give some estimate of the CPU time

involved.

3) The surface integral equation method has been used

by Spielman and Barrington in [1]. An assumption that

has been used in it is that at resonance the problem

reduces to finding the wavenumbers that make the imagi-

nary part of the [Z] matrix singular. This, however, pro-

duces spurious modes. Hence it is worthwhile to note that

the use of [Z] instead of Im [ Z] eliminates these spurious

modes.
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TABLE IV(a)

VANED RECTANGULAR WAVEGUIDE (TM CASE)

Num kc Matrix Stze

1 3.6770 50

2 4.9279 50

3 6.4151 50

4 7.0220 50

kc for dominant mode = 3.65 [Sarkar et al]

Cpu Time for Dominant Mode = 23 sees

Difference in dominant mode = 0.74%

TABLE IV(b)

VANED RECTANGULAR WAVEGUtDE (TE CASE): THE WAVEGUIDE HAS
BEEN MODELED IN SUCH A WAY THAT KtRCHHOFF’S CURRENT LAW IS

SATISFIED AT THE JUNCTION.

Num kc Matrix Size

I 1.5695 40

2 2.1156 40

3- 3.1568 40

4 3.3046 40

kc for dominant mode = 1.57 [Sarkar et al]

Cpu Time for Dominant Mode = 328 sees

Difference in dominant mode = 0.03%

TABLE V(a)

T-SEPTATE WAVEGUIDE (TM CASE)

Num kc Matrix Size

1 8.1293 36

2 10.8659 36

3 14.3161 46

4 14.5550 46

kc for dominant mode = 8.12 [Sarkar et al]

Cpu Time for Dominant Mode = 19.74 sees

Difference in dominant mode = 0.11 Y.

TABLE V(b)

T- SEPTATE WAVEGUIDE (TE CASE): THE WAVEGUIDE HAS BEEN MOD-
ELED IS SUCH A WAY THAT KIRCHHOFF’S CURRENT LAW IS SATISFIED AT

THE T JUNCTION.

Num kc Matrix Size

1 2.9752 40

2 3.1677 40

3 5.6535 66

4 7.2357 66

kc for dominant mode = 3,0 [Sarkm et al]

Cpu Time for Dominant Mode = 169 sees

Difference in dominant mode = 0.83%

TABLE VI(a)

COAXIAL RECTANGULAR WAVEGUIDE (TM CASE)

Num kc Matrix Size

1 6.8400 34

2 8.3286 48

3 8.4905 48

4 10.2959 48

kc for dominant mode = 6.8650 [Gruner]

Cpu Time for Dominant Mode = 40 sees

Difference in dominant mode = 0.36%

TABLE VI(b)
COAXIAL RECTANGULAR WAVEGUIDE (TE CASE)

Num kc Matrix Size

1 2.0789 24

2 2.8465 24

3 3.9631 24

4 5.2864 26

kc for dominant mode = 2.0774 [Grtrner]

Cpu Time for Dominant Mode = 57 sees

Difference in dominant mode = 0.07%
—

TABLE VII(a)
COAXIAL WAVEGUIDE (TM CASE)

Num kc Matrix Size

1 3.8919 56

2 4.1666 56

3 4.4450 56

4 5.2645 56

kc for dominant mode = published data not available

Cpu Time for Dominant Mode = 51 sees

TABLE VII(b)

COAXIAL WAVEGUIDE (TE CASE)

Num kc Matrix Size

1 1.7407 56

2 3.0441 56

3 4.2199 56

4 4.6451 56

kc for dominant mode = published data not available

Cpu Time for Dominant Mode = 447 sees

4) The code developed treats waveguides with arbitrary

cross section. The input data necessary to model the wave-

guide are all that is required from the user. This makes the

algorithm simple to use while maintaining its generality.

5) Due to the absence of charge on a TM waveguide,

the computation of the Z matrix is much faster for the TM

case than for the TE case. Hence the computation of the
TE cutoff modes takes more time, as can be seen from the

tabulation.
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6) For the TE case (for example, vane and T-septate

rectangular waveguides), it is necessary to densely place

expansion functions near a junction so as to better simu-

late Kirchhoff’s current law.

7) Muller’s method can be used to find a prescribed

number of zeros, real or complex, of an arbitrary function.

Hence, this method can be used to pick multiple cutoff

wavenumbers of a waveguide.

VII. SUMMARY AND CONCLUSIONS

A fast iterative technique has been developed to com-

pute the cutoff wavenumbers of conducting waveguides

with arbitrary cross section. The integral equation ap-

proach used here eradicates the existence of any spurious

modes. Both TE and TM cases have been considered. The

method is being extended to waveguides partially filled

with dielectrics, by using the surface equivalence principle.
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