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Cross Sections Using a
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Abstract —This paper describes a procedure for obtaining the cutoff
wavenumbers of TE and TM modes in waveguides of arbitrary cross
section. A surface integral equation approach is used where the E-field
equation has been transformed into a matrix equation using the method of
moments. An iterative technique has been used to pick the eigenvalues of
the solution matrix which corresponds to the waveguide cutoff wavenum-
bers. The salient features of this technique are its speed, its simplicity, and
the absence of any spurious modes while treating waveguides of arbitrary
cross section. The first four modes have been tabulated for various
waveguides and results are in very good agreement with published data.

I. INTRODUCTION

NALYSIS OF hollow conducting waveguides is an
area that has been in the limelight lately. Various
methods to find the cutoff wavenumbers are available in
the literature, among them the finite difference and inte-
gral operator methods. A surface integral equation ap-
proach has been used here because of its simplicity and
generality.
Treatment of waveguides with arbitrary cross section is
a challenging task to solve on the computer. Though
numerous approaches are available in the literature to
solve this problem, they may be deficient in two areas, viz.
speed and simplicity, for simulating waveguides of arbi-
trary cross section. As an example, the finite difference
method may be a very difficult way of treating waveguides
with nonrectangular cross sections. The use of the integral
equation method to solve for the waveguide cutoff
wavenumbers has been explained here by placing con-
siderable importance on the generality of the problem.
Spielman and Harrington [1] have treated this problem by
using a similar approach. Their method, however, leads to
the existence of spurious modes. The method used in this
paper eradicates the existence of spurious modes and con-
verges quadratically in the vicinity of a root (hence is
faster). The cutoff wavenumbers of a coaxial waveguide
with cylindrical outer conductor andrectangular inner con-
ductor have been computed here, which serves as an exam-
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ple to verify the speed and simplicity of this method. The
CPU time for picking the dominant mode has been pro-
vided to give an idea of the speed of this method. The
algorithm was run on an ALLIANT FX/80, a vector
concurrent computer. However, only a single processor in
scalar mode was used, whose speed is comparable to that
of a VAX 8530.

II. INTEGRAL EQUATIONS

The hollow conducting waveguides are assumed to be
infinite in the z direction and to have arbitrary cross
section. The waveguide is completely filled with a homoge-
neous dielectric (air in this case). The matrix containing
the information on the mode cutoff wavenumbers can be
obtained by generating the matrix corresponding to the
scattering problem for the same structure under plane
wave illumination. Consider an equivalent problem where
E' is a wave incident on the hollow conducting waveguide.
This generates surface currents J on the body that in turn
reradiate into free space. Since the body is a conductor, the
total tangential electric field vanishes on the surface of the
body. In other words,

nx[E'+E]=0 (1)

where E° is the scattered field produced by the current J,

and » is the unit vector normal to the surface of the body.
At cutoff, the surface currents J on the walls of the

waveguide produce zero fields on the contour C,. Hence

nxX E*=0. (2)

This is the homogeneous E-field integral equation which
can be used in evaluating the cutoff wavenumbers of a
waveguide. The equation for E* depends on whether the
fields in the waveguide are TM or TE to the - axis.

on C,

A. TM Case

The scattered field E* and the surface electric currents
are in the z direction. Since the current J is independent
of z there is no electric charge associated with the surface
current. Equation (2) then simplifies to

z:[— jwd(J)] =0 (3)

where z is the unit vector in the z direction, w is the
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angular frequency (27f), and A4 denotes the magnetic
vector potential, which is given by the line integral

A(T) = 4%92 IO (Klp-pdl.  (4)

Here p and p’ denote the position vector to the field and
the source point respectively, C, is the contour supporting
J, and k = wy/pe. H{? is the zeroth-order Hankel function
of the second kind.

A method of moments procedure can be used to reduce
the integral equation into a matrix equation. A pulse
expansion for the current J along with a point matching
testing procedure has been used here. The body is reduced
to a number of linear segments as shown in Fig. 1 with the
currents assumed constant on each segment:

1) =2 X IR (9)
P (o) = {1’

0, elsewhere.

Equation (3), after testing at the center of each linear
segment reduces to

- ij P(P)H(Z)(klpj(l/z) P|) dp’=0 (6)

1=1 S
(S +s +1)/2

(5)

’
S,<p <S1+1

] =1 ) 27 RN

B. TE Case
The scattered field and the surface electric currents are
in the circumferential direction and there is surface charge

associated with the electric current. Equation (2) can be
written as

Basn =

X[ = jwd(J)-ve(s)] = (7)

where

A(T) = —Jgﬁf(p )HP (klp — o)) dI
¢(0’) = 4—j€¢CO(p’)H62’(klp —p'l)ar

1
= 4—*95 v’ J(p)H (klp— o) dI’.
we G -

The primed and unprimed variables represent the source
and field coordinates respectively. The quantities p, p’, k
and H{? represent the same quantities as in the TM case,
and n is the unit vector normal to the surface of the
waveguide.
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The method of moments has been used to reduce the
integral equation into a matrix equation. Since the current
flows in a circumferential direction, it is necessary to
enforce Kirchhoff’s current law at a junction of two or
more conductors. This is especially true while analyzing
vaned and T-septate rectangular waveguides. Thus a
triangle expansion for the current J coupled with a pulse
testing procedure has been used here. As in Fig. 1, the
body is modeled using linear segments with the current
varying linearly across each segment. The expansion for J
becomes

5o =5 L IT(P)

4

]
T(p)=——"—, <p'<
l(p) (S,+1—S,) 5, p S+ (8)
p/
=1, $;i1<P' <54y
(S1+2_Sl+1)
=0, otherwise

and s is the circumferential unit vector.
The divergence of J given by v’ -J(p’) can be repre-
sented as a doublet as shown below

v J(p) = ZJV ‘T, (p)

N
= Y JP(p)
=1
-1
P(p) =" <p'<
S eovers SN D
1
= 1+1<p<s (9)
(S1+1_Si+2)

Testing (7) with pulses modifies this equation to

”X[‘_ > f ST(P){HO (k|P,(1/2) p'1)-As,0
( 0,241~ P |) A5,(1/2)+1} dp}
N
+”><{ doc Z P(P){ (k|PJ<1/2>+1 o))

~ H§? (k|PJ(1/2) )} dp]

j=12,--- N Pias =(5j+sj+1)/2
AS,‘(l/z):s(S,H_Sj) Asj(1/2)+1=s(sj+2_sj+1)'
(10)

In (10), an averaging procedure has been used for the
magnetic vector potential and a finite difference approxi-
mation for the scalar potential. Using (6) and (10) the
original problem can be reduced to a matrix equation of
the form

[Zz][/]= (11)
where Z is an N X N matrix and J an N X1 vector.

Matrix Z contains information about the cutoff wavenum-
bers, which occurs as an argument to the Hankel function.
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II1. EvVALUATION OF CUTOFF WAVENUMBERS

The wavenumber k appeats as an argument in (6) and
(10). The problem therefore reduces to finding the
wavenumbers of the [Z] matrix that represent the cutoff
modes. At cutoff, the matrix Z becomes singular. Hence

det[Z] =0. (12)

The determinant of a matrix Z requires 6(n®) operations.
However (12) can be rewritten as

A s A, =0 (13)

where A}, A,,- -+, A, are the eigenvalues of the matrix Z.
This is a very efficient way of evaluating the determinant
since only #(n?) operations are necessary. Since the mini-
mum eigenvalue listed in (13) approaches zero at cutoff,
(11) becomes

[Z][J]=Amin [V] (14)
where A is the smallest eigenvalue of Z. Hence the
problem reduces to finding the wavenumber at which the
minimum eigenvalue of [ Z] goes to zero. The matrix [Z] is
unsymmetric and complex and the eigenvalues are also
complex. The absolute value of the minimum eigenvalue
has been used in the algorithm for finding the cutoff
wavenumbers. A very expensive way of searching for the
cutoff wavenumbers is by using a scanning procedure
wherein the minimum eigenvalues are computed for a
certain range of frequencies. The wavenumber at which the
minimum eigenvalue is the smallest is then the cutoff
wavenumber of the waveguide. This method has two draw-
backs, namely, the evaluation of the Z matrix over a range
of frequencies and the inaccuracy in the result obtained
which depends on the scanning step. These drawbacks
have been solved by using a method expounded by Muller
[2]. Muller’s method is an iterative technique which con-
verges quadratically in the vicinity of a root, doesnot
require the evaluation of any derivatives, and obtains
complex roots even when these roots are not simple.

IV. ALGORITHM FOR OBTAINING CUTOFF
WAVENUMBERS

The steps involved are given below,

i) Choose a lower limit for the wavenumber and use
this information to patch the waveguide using the
necessary number of expansion functions.

ii) An initial guess for the wavenumber is chosen and
the Z matrix is evaluated at this frequency. The
integral equation corresponding to either the TM or
the TE case is used for generating the Z matrix.

1i) The eigenvalues of the Z matrix are then found
using an IMSL routine. These eigenvalues are varied
to find the minimum absolute eigenvalue, which is
then used as the function to be minimized.

iv) Muller’s method is used iteratively to choose the
wavenumbers that minimize the function. Steps (ii)
and (iii) are repeated at each wavenumber chosen
iteratively by Muller’s method. The wavenumber
corresponding to the minimum value of the function
is the cutoff wavenumber of the waveguide. An error
criterion has been used to terminate the algorithm,

Fig. 2. Cylindrical waveguide.
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which is
Ikn+1 - kn'/kn <1O‘5

where k, ., is the present estimate and k, is the
past estimate for the wavenumbers.

V. EXAMPLES

The first four cutoff wavenumbers have been evaluated
for various waveguides as shown in Figs. 2-8. Tables
1(a)-VII(a) and I(b)-VII(b) provide the first four cutoff
wavenumbers for the waveguides depicted in Figs. 2-8 for
the TM and TE modes, respectively.

VI. PoINTs TO NOTE

1) On an average, approximately five expansion func-
tions per wavelength are necessary to simulate the struc-
ture being analyzed.

2) Though Muller’s method is a fast iterative technique.
the rate of convergence depends on the initial guess, which
in turn affects the CPU time. The dominant mode of each
waveguide has therefore been computed using an initial
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Fig. 8. Coaxial waveguide.

TABLE I(a)
CYLINDRICAL WAVEGUIDE (TM Casg): THE First Four CUTOFF
WAVENUMBERS FOR A WAVEGUIDE WITH CYLINDRICAL CROSS SECTION
GIVE AN IDEA OF THE ACCURACY OF THIS METHOD.
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TABLE Il(a)
L-SHAPED WAVEGUIDE (TM CASE)

Num k., Matrix Size
1 48677 40
2 6.1361 40
3 6.9908 40
4 85525 60
k. for dominant mode = 4.819 [Reid and Walsh]
Cpu Time for Dominant Mode = 45 secs

Difference in dominant mode = 1%

TABLE II(b)
L-SHaPED WAVEGUIDE (TE CASE)

Num k., Matrix Size
1 18917 14
2 29159 14

3 48755 22

4 5.2463 22
k. for dominant mode = 1.88 [Sarkar et al]
Cpu Time for Dominant Mode = 29 secs
Difference in dominant mode = 0.62%

TABLE III(a)
SINGLE RiDGE WAVEGUIDE (TM CASE)

Num k;,  Matrix Size

1 120381 40
2 12.2938 40
3 13.9964 70
4 15.5871 70

k. for dominant mode = 12.164 [Spielman and Harrington]
Cpu Time for Dominant Mode = 30 secs ‘
Difference in dominant mode = 1%

TABLE III(b)
SINGLE RIDGE WAVEGUIDE (TE CASE)

Num k(exact) k.(computed) Difference%

1 2.4048 24111 0.26
2 3.8317 3.8416 0.26
3 5.1356 5.1485 0.25
4 5.5200 5.5346 0.26

Order of Matrix = 40
Cpu Time for Dominant Mode = 20 secs

TABLE I(b)y
CyLINDRICAL WAVEGUIDE (TE Casg): A CHECK TO DETERMINE THE
ACCURACY OF THiS METHOD WITH THE FIRST FOUR MODES LISTED.

Num k., Matrix Size
1 22496 28
2 49436 28
3 65189 28
4 7.5642 28

k. for dominant mode = 2.2566 [Sarkar et al]
Cpu Time for Dominant Mode = 156 secs
Difference in dominant mode = 0.31%

Num k(exact) k. (computed) Difference%

1 1.8412 1.8462 0.27
2 3.0542 3.0645 0.34
3 3.8317 3.8422 0.27
4 4.2012 42200 0.45

Order of Matrix = 40
Cpu Time for Dominant Mode = 136 secs

T

guess of k,=1.3 to give some estimate of the CPU time
involved.

3) The surface integral equation method has been used
by Spielman and Harrington in [1]. An assumption that
has been used in it is that at resonance the problem
reduces to finding the wavenumbers that make the imagi-
nary part of the [Z] matrix singular. This, however, pro-
duces spurious modes. Hence it is worthwhile to note that
the use of [Z] instead of Im[Z] eliminates these spurious
modes.
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TABLE 1V(a)
VANED RECTANGULAR WAVEGUIDE (TM CASE)

TABLE VI(a)
Coaxial RECTANGULAR WAVEGUIDE (TM CASE)

Num k. Matrix Size
1 3.6770 50
2 49279 50
3 64151 50
4 7.0220 50

k. for dominant mode = 3.65 [Sarkar et al]
Cpu Time for Dominant Mode = 23 secs
Difference in dominant mode = 0.74%

TABLE IV(b)
VANED RECTANGULAR WAVEGUIDE (TE CASE): THE WAVEGUIDE Has
BEEN MODELED IN SUCH A WAY THAT KIRCHHOFF'S CURRENT LAW 1s
SATISFIED AT THE JUNCTION.

Num k. Matrix Size
1 1.5695 40
2 21156 40
3 31568 40
4 33046 40

k. for dominant mode = 1.57 [Sarkar et al]
Cpu Time for Dominant Mode = 328 secs
Difference in dominant mode = 0.03%

TABLE V(a)
T-SEPTATE WAVEGUIDE (TM Casg)

Num k. Matrix Size
1 8.1293 36
2 10.8659 36
3 14.3161 46
4 14.5550 46

k. for dominant mode = 8.12 [Sarkar et al]
Cpu Time for Dominant Mode = 19.74 secs
Difference in dominant mode = 0.11%

TABLE V(b)
T-SEPTATE WAVEGUIDE (TE CASE): THE WAVEGUIDE Has BEeN Mob-
ELED IS SUCH A WAY THAT KIRCHHOFF’S CURRENT LAW IS SATISFIED AT
THE T JUNCTION.

Num k. Matrix Size
1 6.8400 34
2 83286 48
3 84905 48
4 10.2959 48

k. for dominant mode = 6.8650 [Gruner]
Cpu Time for Dominant Mode = 40 secs
Difference in dominant mode = 0.36%

TABLE VI(b)
CoaxiaL RECTANGULAR WAVEGUIDE (TE CasE)

Num k, Matrix Size
1 20789 24
2 2.8465 24
3 3.9631 24
4 52864 26

k. for dominant mode = 2.0774 [Gruner]
Cpu Time for Dominant Mode = 57 secs
Difference in dominant mode = 0.07%

TABLE VII(a)
CoAXIAL WAVEGUIDE (TM CasE)

Num k., Matrix Size
1 3.8919 56
2 4.1666 56
3 44450 56
4 52645 56

k. for dominant mode = published data not available

Cpu Time for Dominant Mode = 51 secs

TABLE VII(b)
CoaxiAL WAVEGUIDE (TE CASE)

Num k., Matrix Size
1 1.7407 56
2 3.0441 56
3 42199 56
4  4,6451 56

k. for dominant mode = published data not available

Cpu Time for Dominant Mode = 447 secs

Num k., Matrix Size
1 2.9752 40
2 3.1677 40
3 56535 66
4 7.2357 66

k, for dominant mode = 3.0 [Sarkar et al]
Cpu Time for Dominant Mode = 169 secs
Difference in dominant mode = 0.83%

4) The code developed treats waveguides with arbitrary
cross section. The input data necessary to model the wave-
guide are all that is required from the user. This makes the
algorithm simple to use while maintaining its generality.

5) Due to the absence of charge on a TM waveguide,
the computation of the Z matrix is much faster for the TM
case than for the TE case. Hence the computation of the
TE cutoff modes takes more time, as can be seen from the
tabulation.
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6) For the TE case (for example, vane and T-septate
rectangular waveguides), it is necessary to densely place
expansion functions near a junction so as to better simu-
late Kirchhoff’s current law.

7) Muller’s method can be used to find a prescribed
number of zeros, real or complex, of an arbitrary function.
Hence, this method can be used to pick multiple cutoff
wavenumbers of a waveguide.

VIIL

A fast iterative technique has been developed to com-
pute the cutoff wavenumbers of conducting waveguides
with arbitrary cross section. The integral equation ap-
proach used here eradicates the existence of any spurious
modes. Both TE and TM cases have been considered. The
method is being extended to waveguides partially filled
with dielectrics, by using the surface equivalence principle.

SUMMARY AND CONCLUSIONS
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